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MINIMUM PAIR-DEGREE FOR TIGHT HAMILTONIAN

CYCLES IN 4-UNIFORM HYPERGRAPHS

C. REIHER, V. RÖDL, A. RUCIŃSKI, M. SCHACHT and B. SCHÜLKE

Abstract. We show that every 4-uniform hypergraph with n vertices and minimum

pair-degree at least (5/9+o(1))n2/2 contains a tight Hamiltonian cycle. This degree
condition is asymptotically optimal. In the proof we use a variant of the absorbing

method and ideas from the proof of the optimal minimum vertex degree condition for

tight Hamiltonian cycles in 3-uniform hypergraphs that was obtained in a previous
work by Reiher, Rödl, Ruciński, Schacht, and Szemerédi.

1. Background and main result

We deal with hypergraph extensions of Dirac’s Theorem. In 1952 G. A. Dirac [1]
proved that every graph G = (V,E) on at least 3 vertices and with minimum vertex
degree δ(G) ≥ |V |/2 contains a Hamiltonian cycle. This result is best possible,
as there are graphs G with minimum degree δ(G) =

⌈
|V |/2

⌉
− 1 not containing a

Hamiltonian cycle.
For k ≥ 2, a k-uniform hypergraph, or, shortly, a k-graph, is a pair (V,E), where

E ⊆ V (k) := {e ⊆ V : |e| = k}, that is, the edge set E = E(H) consists of k-ele-
ment sets of vertices. After several earlier, related results offering various Dirac-
type conditions ensuring the existence of Hamiltonian cycles in k-graphs (see,
e.g., [6] and [9]), in [5] the following extension of Dirac’s Theorem was established.

A 3-graph H is called Hamiltonian if for some cyclic ordering of its vertices
V (H) = {x1, . . . , xn}, every consecutive triple of vertices {xi, xi+1, xi+2} with i ∈
Z/nZ is an edge of H.

Theorem 1.1. For every α > 0 there exists an integer n0 such that every
3-uniform hypergraph H with n ≥ n0 vertices and with minimum vertex degree

δ(H) ≥
(
5
9 + α

)
n2

2 is Hamiltonian.

One may consider various further extensions of Theorem 1.1 to k-uniform hy-
pergraphs. Perhaps the most natural one would be to find the smallest con-
stant ck with the property that, for large n, every n-vertex k-graph H with
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minimum degree δ(H) ≥ (ck + o(1))nk−1/(k − 1)! is Hamiltonian. (Similarly,
as for k = 3, a k-graph H is called Hamiltonian if for some cyclic ordering of
its vertices V (H) = {x1, . . . , xn}, every consecutive k-element segment of ver-
tices {xi, xi+1, . . . , xi+k−1} with i ∈ Z/nZ is an edge of H.)

Since finding an optimal value of the parameter ck seems beyond the reach of
our current methodology, here we take another approach, which allows us to utilise
some of the methods developed in [4] and [5]. Given a k-graph H = (V,E) and
a subset S ⊆ V , we denote by dH(S) the degree of S in H, that is, the number
of edges e ∈ H with S ⊆ e. For d ∈ [k − 1], the minimum d-degree δd(H) is the
smallest value of dH(S) taken over all d-element subsets S ⊆ V . Finally, given d, k,
and n, with 1 ≤ d ≤ k − 1 < n, we define

h
(k)
d (n) = min{h ∈ N : each n-vertex k-graph H with δd(H) ≥ h is Hamiltonian}.

The following generalisation of Dirac’s result was proved in [7].

Theorem 1.2. For every k ≥ 2, we have h
(k)
k−1(n) =

(
1
2 + o(1)

)
n.

Here we concentrate on the next value of d, namely d = k − 2, and formulate
the following conjecture.

Conjecture 1.3. For all k ≥ 3, we have h
(k)
k−2(n) =

(
5
9 + o(1)

)
n2/2.

The construction presented later in this section shows that, if true, this con-
jecture provides the best possible constant. In [5] Conjecture 1.3 was verified
for k = 3. The main result of this paper establishes it for k = 4. For k ≥ 5 it
remains open.

Theorem 1.4 (Main Theorem). For every α > 0 there exists an integer n0
such that every 4-uniform hypergraph H with n ≥ n0 vertices and with minimum

pair-degree δ2(H) ≥
(
5
9 + α

)
n2

2 is Hamiltonian.

2. Tight paths and cycles

For k ≥ 3, a k-graph P is a tight path of length `, if |V (P )| = `+k−1 and there is an
ordering of the vertices V (P ) = {x1, . . . , x`+k−1} such that a k-element subset e
forms an edge of P if and only if e = {xi, xi+1, . . . , xi+k−1} for some i ∈ [`].
The ordered (k − 1)-tuples (x1, x2, . . . , xk−1) and (x`+1, x`+2, . . . , x`+k−1) are the
end-(k − 1)-tuples of P and we say that P is a tight path from (x1, x2, . . . , xk−1)
to (x`+1, x`+2, . . . , x`+k−1). This definition of end-tuples is not symmetric and
implicitly fixes a direction on P and the order of the end-tuples. For k = 3 we
call the end-tuples end-pairs, and for k = 4 end-triples. All other vertices of P
are called internal. We sometimes identify such a path P with the sequence of its
vertices x1 . . . x`+k−1.

Furthermore, a tight cycle C of length ` ≥ k + 1 consists of a path x1 . . . x` of
length `−k+1 and k−1 additional edges {x`−k+1, . . . , x`, x1}, . . . , {x`, . . . , xk−1}.
In both cases the length of a tight cycle and of a tight path is measured by the
number of edges. For simplicity, when k = 3 or k = 4, we denote edges by xyz
and xyzw instead of {x, y, z} and {x, y, z, w}.
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If a tight cycle C is a sub-k-graph of another k-graph H with the same number
of vertices, then we call C a tight Hamiltonian cycle in H. Note that with our
earlier notion H is Hamiltonian if and only if H contains a tight Hamiltonian cycle.
Throughout this abstract, we will skip the word ‘tight’, as we are not considering
any other types of cycles.

3. Lower bound

For k ≥ 4, we provide a construction which shows that the degree constraint in
Conjecture 1.3 is asymptotically optimal. Our construction is based on a biparti-
tion of the vertex set and forbidding just one type of edges to be present, similarly
as it was done for k = 3 in [5] (see also [3] and [7]). For k ≥ 4 and sufficiently
large n, let |V | = n, V = X∪̇Y , and |X| = b 23nc. Further, let j be an integer such
that

2
3k − 1 < j < 2

3k + 1.

Define a k-graph H on V with edge set V (k) r Ej , where Ej is the set of all
k-element subsets of V with exactly j vertices in X (and thus exactly k−j vertices
in Y ). We need to show that

(a) there is no Hamiltonian cycle in H, and

(b) δk−2(H) ∼ 5
9
n2

2 .
To prove (a), suppose to the contrary that there is a Hamiltonian cycle C in H

and consider the quantity Q =
∑

e∈C |e∩X|. As every vertex belongs to precisely

k edges of C, we have Q = k|X| = kb 23nc. Thus, by averaging, there exist edges

e1, e2 ∈ C such that |e1 ∩ X| ≤ 2
3k < j + 1 and |e2 ∩ X| ≥ 2

3k > j − 1. But,
by our construction, there are no edges e ∈ H with |e ∩ X| = j. Thus, in fact,
|e1∩X| ≤ j−1 and |e2∩X| ≥ j+1. However, this is obviously impossible in view
of the lack of edges in C with precisely j vertices in X. We omit the calculations
that prove (b).

4. Overview of the proof

The proof relies on the absorption method introduced in [8]. We will construct a
large cycle covering almost all vertices with the property that it can absorb the
remaining vertices into it, i.e. that we can build a cycle containing both the vertices
of the previous cycle and the remaining vertices. Firstly, we show that for every
quadruple of vertices v1v2v3v4 there are many subgraphs with a certain structure;
we will call these subgraphs v1v2v3v4-absorbers. A v1v2v3v4-absorber consists of
vertices which can build paths together with v1v2v3v4 and without v1v2v3v4 such
that these paths have the same end-triples and contain all vertices of the absorber.
With the probabilistic method we can then find a small set of absorbers such that
every quadruple v1v2v3v4 has many v1v2v3v4-absorbers inside this set. Further,
we will show that we can in fact connect the absorbers in this set to an absorbing
path PA containing only few vertices. Due to the structure of absorbers, this path
has the property that for any set X of not too many vertices, there is a path on the
vertex set V (PA)∪X and with the same end-triples as PA. Since |PA| is small, the
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degree condition stays almost intact in H −PA. Next, we show that we can cover
almost all vertices with one long path and connect the end-triples of this path to
the end-triples of PA creating a cycle. Lastly, we can absorb the few remaining
vertices into PA, leaving the end-triples and therefore the connections to the long
path intact, yielding a Hamiltonian cycle.

Let us look at some of these steps in a little more detail. For some of them,
the idea is to look into the link graphs of vertices, and make use of the minimum
vertex degree condition with methods from [5]. (The link graph of a vertex u in
a 4-graph H is a 3-graph on V (H) with xyz being an edge if and only if uxyz is
an edge in H.) Firstly, at several points we needed to connect two end-triples of
paths by a path. We can only guarantee such a connection for certain, so called
connectable, triples. Roughly speaking, a triple abc is connectable if for many
vertices u, the pairs ab and bc can be connected by many tight 3-uniform paths in
the link graph of u. To prove such a Connecting Lemma, i.e., to construct many
paths connecting two triples abc and xyz, the basic idea is as follows. We show that
there is a large set U of vertices in whose link graphs we find a common large set of
paths connecting bc with xy. Each of those 3-uniform paths gives rise to many 4-
uniform paths when we insert vertices from U at every fourth position. So in
some sense 4-graphs with the minimum pair-degree condition from Theorem 1.4
“inherit” their connectivity from the connectivity of 3-graphs with a respective
minimum vertex degree condition. In fact, this is an example of a more general
strategy of proving a Connecting Lemma by using good connectivity properties
in the link graphs. A simple probabilistic argument now ensures the existence of
a small reservoir set such that all connectable triples are in fact connectable by
many paths taking all their internal vertices from this reservoir.

As mentioned above, following an idea of [4] we will always absorb four vertices
into one absorber, whereas commonly a single vertex is absorbed into one absorber.
The advantage of our approach is that we can then use absorbers whose main part
is a 4-partite 4-graph. When showing that for each quadruple there exist many
absorbers, we can then make use of a result by Erdös [2] that 4-partite 4-graphs
have Turán density 0 and that hence, by supersaturation, there exist many copies
of any small 4-partite 4-graph in a 4-graph satisfying the minimum pair-degree
condition in Theorem 1.4. The divisibility issues arising from this way of absorbing
are fairly easy to deal with.

Lastly, let us sketch the construction of the almost covering path. While proofs
for the existence of almost covering subgraphs often rely on the Hypergraph Regu-
larity Method, we are indeed able to finish without using it. We will instead argue
that a maximal path Q consisting of a set P of paths (with certain properties)
that are connected through the reservoir will cover almost everything. To do this,
we will assume that the set of uncovered vertices U is large and construct a longer
path. For that we will not only use the uncovered vertices but also vertices of
some of the paths in P. Since we will be able to construct more new paths to
add to P than we have to take out, in the end we get a longer path. By the
probabilistic method we will show that there is some selection P ′ ⊆ P such that
for many vertices from U the link graph induced on V (P ′) satisfies the minimum
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vertex degree condition for Hamiltonian cycles in 3-graphs (note that the proof
in [5] does not use the Regularity Lemma). In fact, we only need some covering
of almost all vertices in this link graph with certain (3-uniform) paths. By insert-
ing some vertices from U at every fourth position into these paths we get more
than |P ′| new 4-uniform paths. Then we get a longer path from Q by taking out
the paths in P ′, adding the newly constructed paths and connecting everything
through the reservoir.

The fact that important parts of the proof can in parts be reduced to the result
on the minimum vertex degree condition for 3-uniform hypergraphs together with
the lower bound constructions motivate Conjecture 1.3.
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